Lending Club APl Documentation
Release 0.1.10

Jeremy Gillick

Jul 06, 2017






Contents

5

Python Module Index

Disclaimer
Download
API
Examples

License

25

29

31







Lending Club API Documentation, Release 0.1.10

This is the API documentation for the stand-alone python module for interacting with your Lending Club account. In
a nutshell, it lets you check your cash balance, search for notes, build orders, invest and more.

Contents 1



Lending Club APl Documentation, Release 0.1.10

2 Contents



CHAPTER 1

Disclaimer

I have tested this tool to the best of my ability, but understand that it may have bugs. Use at your own risk!




Lending Club APl Documentation, Release 0.1.10

4 Chapter 1. Disclaimer



CHAPTER 2

Download

This project is hosted on github



https://github.com/jgillick/LendingClub

Lending Club APl Documentation, Release 0.1.10

6 Chapter 2. Download



CHAPTER 3

API

LendingClub

The stand-alone python module for interacting with your Lending Club account.

class lendingclub.LendingClub (email=None, password=None, logger=None)
The main entry point for interacting with Lending Club.

Parameters email : string
The email of a user on Lending Club
password : string
The user’s password, for authentication.
logger : Logger
A python logger used to get debugging output from this module.

Examples

Get the cash balance in your lending club account:

>>> from lendingclub import LendingClub
>>> lc = LendingClub ()

>>> lc.authenticate () # Authenticate with your lending club credentials
Email:test@test.com

Password:

True

>>> lc.get_cash_balance () # See the cash you have available for investing

463.80000000000001

You can also enter your email and password when you instantiate the LendingClub class, in one line:



http://docs.python.org/2/library/logging.html

Lending Club API Documentation, Release 0.1.10

>>> from lendingclub import LendingClub

>>> 1lc = LendingClub (email="testltest.com', password='secretl23")
>>> lc.authenticate()

True

Attributes

order
session

Methods

assign_to_portfolio (portfolio_name, loan_id, order_id)
Assign a note to a named portfolio. loan_id and order_id can be either integer values or lists. If choosing
lists, they both MUST be the same length and line up. For example, order_id[5] must be the order ID for
loan_id[5]

Parameters portfolio_name : string
The name of the portfolio to assign a the loan note to — new or existing
loan_id : int or list
The loan ID, or list of loan IDs, to assign to the portfolio
order_id : int or list

The order ID, or list of order IDs, that this loan note was invested with. You can find
this in the dict returned from get_note()

Returns boolean
True on success

authenticate (email=None, password=None)
Attempt to authenticate the user.

Parameters email : string
The email of a user on Lending Club
password : string
The user’s password, for authentication.
Returns boolean
True if the user authenticated or raises an exception if not
Raises session.AuthenticationError
If authentication failed
session.NetworkError
If a network error occurred

build_portfolio (cash, max_per_note=25, min_percent=0, max_percent=20, filters=None, auto-

matically_invest=False, do_not_clear_staging=False)
Returns a list of loan notes that are diversified by your min/max percent request and filters. One way to

8 Chapter 3. API



Lending Club API Documentation, Release 0.1.10

invest in these loan notes, is to start an order and use add_batch to add all the loan fragments to them. (see
examples)

Parameters cash : int
The total amount you want to invest across a portfolio of loans (at least $25).
max_per_note : int, optional
The maximum dollar amount you want to invest per note. Must be a multiple of 25
min_percent : int, optional

THIS IS NOT PER NOTE, but the minimum average percent of return for the entire
portfolio.

max_percent : int, optional

THIS IS NOT PER NOTE, but the maxmimum average percent of return for the entire
portfolio.

filters : lendingclub.filters.*, optional
The filters to use to search for portfolios
automatically_invest : boolean, optional

If you want the tool to create an order and automatically invest in the portfolio that
matches your filter. (default False)

do_not_clear_staging : boolean, optional

Similar to automatically_invest, don’t do this unless you know what you’re doing. Set-
ting this to True stops the method from clearing the loan staging area before returning

Returns dict

A dict representing a new portfolio or False if nothing was found. If automati-
cally_invest was set to True, the dict will contain an order_id key with the ID of the
completed investment order.

Notes

The min/max_percent parameters

When searching for portfolios, these parameters will match a portfolio of loan notes which have an AV-
ERAGE percent return between these values. If there are multiple portfolio matches, the one closes to the
max percent will be chosen.

Examples

Here we want to invest $400 in a portfolio with only B, C, D and E grade notes with an average overall
return between 17% - 19%. This similar to finding a portfolio in the ‘Invest’ section on lendingclub.com:

>>> from lendingclub import LendingClub
>>> from lendingclub.filters import Filter
>>> 1lc = LendingClub ()

>>> lc.authenticate()

Email:test@test.com

Password:

True

3.1.

LendingClub 9



Lending Club API Documentation, Release 0.1.10

>>> filters = Filter () # Set the
—D and E grade notes)

>>> filters['grades']['C'] = True

>>> filters['grades']['D'] = True

>>> filters['grades']['E'] = True
(

>>> lc.get_cash_balance () # See the
—investing

463.80000000000001

search filters (only B, C,_

cash you have available for,

>>> portfolio = lc.build_portfolio (400, # Invest $400 in a portfolio...
min_percent=17.0, # Return percent average between 17 —
—19%
max_percent=19.0,
max_per_note=50, # As much as $50 per note
filters=filters) # Search using your filters
>>> len(portfolio['loan_fractions']) # See how many loans are in this_
—portfolio
16
>>> loans_notes = portfolio['loan_fractions']
>>> order = lc.start_order () # Start a new order
>>> order.add_batch (loans_notes) # Add the loan notes to the order
>>> order.execute () # Execute the order
1861880

Here we do a similar search, but automatically invest the found portfolio. NOTE This does not allow you

to review the portfolio before you invest in it.

>>> from lendingclub import LendingClub
>>> from lendingclub.filters import Filter
>>> 1lc = LendingClub ()

>>> lc.authenticate()

Email:test@test.com

463.80000000000001

Password:
True

# Filter shorthand
>>> filters = Filter({'grades': {'B': True, 'C': True, 'D': True, 'E': True}})
>>> lc.get_cash_balance () # See the cash you have available for,
—investing

>>> portfolio = lc.build_portfolio (400,
min_percent=17.0,
max_percent=19.0,
max_per_note=50,
filters=filters,

1861880

automatically_invest=True) # Same settings, except invest
—immediately
>>> portfolio['order_id'] # See order ID

get_cash_balance ()
Returns the account cash balance available for investing

Returns float

The cash balance in your account.

10

Chapter 3. API




Lending Club API Documentation, Release 0.1.10

get_investable_balance ()
Returns the amount of money from your account that you can invest. Loans are multiples of $25, so this is
your total cash balance, adjusted to be a multiple of 25.

Returns int
The amount of cash you can invest

get_note (note_id)
Get a loan note that you’ve invested in by ID

Parameters note_id : int
The note ID
Returns dict

A dictionary representing the matching note or False

Examples

>>> from lendingclub import LendingClub

>>> 1lc = LendingClub (email="'testl@test.com', password='secretl23")

>>> lc.authenticate()

True

>>> notes = lc.my_notes|() # Get the first 100 loan notes
>>> len(notes['loans'])

100

>>> notes['total'] # See the total number of loan,,
—notes you have

630

>>> notes = lc.my_notes (start_index=100) # Get the next 100 loan notes
>>> len(notes['loans'])

100

>>> notes = lc.my_notes (get_all=True) # Get all notes in one request,,
— (may be slow)

>>> len(notes['loans'])

630

get_portfolio_list (names_only=False)
Get your list of named portfolios from the lendingclub.com

Parameters names_only : boolean, optional

If set to True, the function will return a list of portfolio names, instead of portfolio
objects

Returns list
A list of portfolios (or names, if names_only is True)

get_saved_filter (filter_id)
Load a single saved search filter from the site by ID

Parameters filter_id : int
The ID of the saved filter
Returns SavedFilter

A lendingclub.filters.SavedFilter object or False

3.1.

LendingClub 11



Lending Club API Documentation, Release 0.1.10

get_saved_filters ()
Get a list of all the saved search filters you’ve created on lendingclub.com

Returns list
Listof lendingclub. filters.SavedFilter objects

is _site_available()
Returns true if we can access LendingClub.com This is also a simple test to see if there’s an internet
connection

Returns boolean

my_notes (start_index=0, limit=100, get_all=False, sort_by="loanld’, sort_dir="asc’)
Return all the loan notes you’ve already invested in. By default it’ll return 100 results at a time.

Parameters start_index : int, optional

The result index to start on. By default only 100 records will be returned at a time, so
use this to start at a later index in the results. For example, to get results 200 - 300, set
start_index to 200. (default is 0)

limit : int, optional
The number of results to return per request. (default is 100)
get_all : boolean, optional
Return all results in one request, instead of 100 per request.
sort_by : string, optional
What key to sort on
sort_dir : {‘asc’, ‘desc’}, optional
Which direction to sort
Returns dict
A dictionary with a list of matching notes on the loans key

search (filters=None, start_index=0, limit=100)
Search for a list of notes that can be invested in. (similar to searching for notes in the Browse section on
the site)

Parameters filters : lendingclub.filters.*, optional

The filter to use to search for notes. If no filter is passed, a wildcard search will be
performed.

start_index : int, optional

The result index to start on. By default only 100 records will be returned at a time, so
use this to start at a later index in the results. For example, to get results 200 - 300, set
start_index to 200. (default is 0)

limit : int, optional
The number of results to return per request. (default is 100)
Returns dict

A dictionary object with the list of matching loans under the loans key.

12 Chapter 3. API



Lending Club API Documentation, Release 0.1.10

search_my_notes (loan_id=None, order_id=None, grade=None, portfolio_name=None, sta-

tuszNQne, term=None) ) )
Search for notes you are invested in. Use the parameters to define how to search. Passing no parameters is

the same as calling my_notes(get_all=True)
Parameters loan_id : int, optional

Search for notes for a specific loan. Since a loan is broken up into a pool of notes, it’s
possible to invest multiple notes in a single loan

order_id : int, optional
Search for notes from a particular investment order.
grade : {A,B,C, D, E, F, G}, optional
Match by a particular loan grade
portfolio_name : string, optional
Search for notes in a portfolio with this name (case sensitive)

status : string, {issued, in-review, in-funding, current, charged-off, late, in-grace-period,
fully-paid}, optional

The funding status string.
term : {60, 36}, optional
Term length, either 60 or 36 (for 5 year and 3 year, respectively)
Returns dict
A dictionary with a list of matching notes on the loans key

set_logger (logger)
Set a logger to send debug messages to

Parameters logger : Logger
A python logger used to get debugging output from this module.

start_order ()
Start a new investment order for loans

Returns lendingclub.Order
The lendingclub.Order object you can use for investing in loan notes.

version ()
Return the version number of the Lending Club Investor tool

Returns string

The version number string

Exceptions
exception 1endingclub.LendingClubError (value, response=None)
Bases: exceptions.Exception

An error occurred. If the error was the result of an API call, the response attribute will contain the HTTP requests
response object that was used to make the call to LendingClub.

Parameters value : string

3.1. LendingClub 13


http://docs.python.org/2/library/logging.html

Lending Club API Documentation, Release 0.1.10

The error message

response : requests.Response

Filters

Filters are used to search lending club for loans to invest in. There are many filters you can use, here are some examples
with the main Filter class.

For example, to search for B grade loans, you could create a filter like this:

>>> filters = Filter()
>>> filters['grades']['B'] = True

Or, another more complex example:

>>> filters = Filter ()

>>> filters['grades']['B'] = True
>>> filters['funding progress'] = 90
>>> filters['term']['Year5'] = False

This would search for B grade loans that are at least 90% funded and not 5 year loans.

Filters currently do not support all search criteria. To see what is supported, create one and print it:

>>> filter = Filter ()
>>> print filter
{'exclude_existing': True,
'funding_progress': 0,
'grades': {'A': False,
'All': True,
'B': False,
'C': False,
'D': False,
'E': False,
'F': False,
'G': False},
'term': {'Year3': True,
'Year5': True}}

You can also set the values on instantiation:

>>> filters = Filter({'grades': {'B': True, 'C': True, 'D': True, 'E': True}})

Filter
class lendingclub.filters.Filter (filters=None)
Bases: dict

The default search filter that let’s you refine your search based on a dictionary of search facets. Not all search
options are supported yet.

Parameters filters : dict, optional

This will override any of the search filters you want on instantiation.

14 Chapter 3. API



http://docs.python-requests.org/en/latest/api/#requests.Response

Lending Club API Documentation, Release 0.1.10

Examples

See the default filters:

>>> from lendingclub.filters import Filter
>>> from pprint import pprint
>>> filter = Filter()
>>> pprint (filter)
{'exclude_existing': True,
'funding_progress': O,
'grades': {'A': False,
'All': True,
'B': False,
'C': False,
'D': False,
'E': False,
'F': False,
'G': False},
'term': {'Year3': True,
'Year5': True}}

Set filters on instantiation:

>>> from lendingclub.filters import Filter
>>> from pprint import pprint
>>> filters = Filter({'grades': {'B': True, 'C': True, 'D': True, 'E': True}})
>>> pprint (filters['grades'])
{'All': False,
'A': False,
'B': True,

'C': True,
'D': True,
'E': True,
'F': False,
'G': False}
Methods

search_string ()
” Returns the JSON string that LendingClub expects for it’s search

validate (results)
Validate that the results indeed match the filters. It’s a VERY good idea to run your search results through
this, even though the filters were passed to LendingClub in your search. Since we’re not using formal APIs
for LendingClub, they could change the way their search works at anytime, which might break the filters.

Parameters results : list

A list of loan note records returned from LendingClub
Returns boolean

True or raises FilterValidationError
Raises FilterValidationError

If a loan does not match the filter criteria

3.2. Filters 15



Lending Club API Documentation, Release 0.1.10

validate_one (loan)
Validate a single loan result record against the filters

Parameters loan : dict

A single loan note record
Returns boolean

True or raises FilterValidationError
Raises FilterValidationError

If the loan does not match the filter criteria

FilterByLoanlID

class lendingclub.filters.FilterByLoanID (loan_id)
Bases: lendingclub.filters.Filter
Creates a filter to search by loan ID. You can either search by 1 loan ID or for multiple loans by ID.

Parameters loan_id : int or list

The loan ID or a list of loan IDs

Examples

Search for 1 loan by ID:

>>> from lendingclub import LendingClub

>>> from lendingclub.filters import FilterByLoanID

>>> 1lc = LendingClub(email="testltest.com', password='secretl23")
>>> lc.authenticate ()

True

>>> filter = FilterByLoanID (1234) # Search for the loan 1234
>>> results = lc.search(filter)

>>> len (results['loans'])

1

Search for multiple loans by ID:

>>> from lendingclub import LendingClub

>>> from lendingclub.filters import FilterByLoanID

>>> 1lc = LendingClub (email="testltest.com', password='secretl23")
>>> lc.authenticate()

True

>>> filter = FilterByLoanID (54321, 76432) # Search for two loans: 54321 and 76432
>>> results = lc.search(filter)

>>> len (results['loans'])

2

16 Chapter 3. API



Lending Club API Documentation, Release 0.1.10

Methods

SavedFilter
class lendingclub.filters.SavedFilter (I, filter_id)
Bases: lendingclub.filters.Filter

Load a saved search filter from the site. Since this is loading a filter from the server, the individual values
cannot be modified. Most often it is easiest to load the saved filters from LendingClub, via get_saved_filters and
get_saved_filter. See examples.

Parameters Ic: Iendingclub.LendingClub
An instance of the LendingClub class that will be used to communicate with the site
filter_id : int
The ID of the filter to load

Examples

The SavedFilter needs to use an instance of LendingClub to access the site, so the class has a couple wrappers
you can use to load SavedFilters. Here are a couple examples of loading saved filters from the LendingClub
instance.

Load all saved filters:

>>> from lendingclub import LendingClub
>>> from lendingclub.filters import SavedFilter

>>> 1lc = LendingClub (email='testltest.com', password='secretl23")

>>> lc.authenticate ()

True

>>> filters = SavedFilter.all_filters(lc) # Get a list of all saved,

—~filters on LendinClub.com
>>> print filters
[<SavedFilter: 12345, '90 Percent'>, <SavedFilter: 23456, 'Only A loans'>]

Load a single saved filter:

>>> from lendingclub import LendingClub

>>> from lendingclub.filters import SavedFilter

>>> 1lc = LendingClub (email='testltest.com', password='secretl23")

>>> lc.authenticate ()

True

>>> filter = lc.get_saved_filter (23456) # Get a single saved search filter,,
—from the site by ID

>>> filter.name

u'Only A'

3.2. Filters 17



Lending Club API Documentation, Release 0.1.10

Attributes

id

json
json_text
Ic

name
response

Methods

staticall filters (lc)
Get a list of all your saved filters

Parameters Ic: lendingclub.LendingClub

An instance of the authenticated LendingClub class
Returns list

A list of lendingclub.filters.SavedFilter objects

load ()
Load the filter from the server

reload ()
Reload the saved filter

search_string ()
Get the search JSON string to send to the server

Exceptions

exception lendingclub.filters.FilterValidationError (value=None, loan=None, crite-

ria=None)
Bases: exceptions.Exception

A loan note does not match the filters set.

After a search is performed, each loan returned from the server will be validate against the filter’s criteria, for
good measure. If it doesn’t match, this exception is thrown.

Parameters value : string
The error message
loan : dict
The loan that did not match
criteria : string
The filter item that the loan failed on.

exception lendingclub.filters.SavedFilterError (value, request=None)
Bases: exceptions.Exception

An error occurred while loading or processing a :class:SavedFilter

Parameters value : string

18 Chapter 3. API



Lending Club API Documentation, Release 0.1.10

The error message
response : requests.Response

The Response object from the HTTP request to find the saved filter.

Order

class lendingclub.Order (lc)
Used to create an order for one or more loan notes. It’s best to create the Order instance through the
lendingclub.LendingClub.start_order () method (see examples below).

Parameters Ic: Iendingclub.LendingClub

The LendingClub API object that is used to communicate with lendingclub.com

Examples

Invest in a single loan:

>>> from lendingclub import LendingClub

>>> lc = LendingClub ()

>>> lc.authenticate()

Email:test@test.com

Password:

True

>>> order = lc.start_order () Start a new investment order

>>> order.add (654321, 25) # Add loan 654321 to the order with a $25_,
—investment

H

>>> order.execute () # Execute the order

1861879

>>> order.order_id # See the order ID

1861879

>>> order.assign_to_portfolio('Foo') # Assign the loan in this order to a_
—portfolio called 'Foo'

True

Invest $25 in multiple loans:

>>> from lendingclub import LendingClub

>>> 1lc = LendingClub (email="testltest.com', password='mysecret')
>>> lc.authenticate ()

True

>>> loans = [1234, 2345, 3456] # Create a 1list of loan IDs
>>> order = lc.start_order () # Start a new order

>>> order.add_batch (loans, 25) # Invest $25 in each loan
>>> order.execute () # Execute the order

1861880

Invest different amounts in multiple loans:

>>> from lendingclub import LendingClub

>>> 1lc = LendingClub(email='testl@test.com', password='mysecret')
>>> lc.authenticate ()

True

>>> loans = [

3.3. Oorder 19


http://docs.python-requests.org/en/latest/api/#requests.Response

Lending Club API Documentation, Release 0.1.10

{'"loan_id': 1234, invest_amount: 50}, # $50 in 1234
{'"loan_id': 2345, invest_amount: 25}, # $25 in 2345
{'"loan_id': 3456, invest_amount: 150} # $150 in 3456
]
>>> order = lc.start_order ()
>>> order.add_batch(loans) # Do not pass “batch_amount' parameter,
—~this time
>>> order.execute () # Execute the order
1861880

Attributes

Ic
loans

Methods

add (loan_id, amount)
Add a loan and amount you want to invest, to your order. If this loan is already in your order, it’s amount
will be replaced with the this new amount

Parameters loan_id : int or dict
The ID of the loan you want to add or a dictionary containing a loan_id value
amount : int % 25
The dollar amount you want to invest in this loan, as a multiple of 25.

add_batch (loans, batch_amount=None)
Add a batch of loans to your order.

Parameters loans : list

A list of dictionary objects representing each loan and the amount you want to invest in
it (see examples below).

batch_amount : int, optional

The dollar amount you want to set on ALL loans in this batch. NOTE: This will override
the invest_amount value for each loan.

Examples

Each item in the loans list can either be a loan ID OR a dictionary object containing loan_id and in-
vest_amount values. The invest_amount value is the dollar amount you wish to invest in this loan.

List of IDs:

# Invest S50 in 3 loans
order.add_batch ([1234, 2345, 34561, 50)

List of Dictionaries:

20 Chapter 3. API



Lending Club API Documentation, Release 0.1.10

# Invest different amounts 1in each loans
order.add_batch ([
{'loan_id': 1234, invest_amount: 50},
{"loan_id': 2345, invest_amount: 25},
{"loan_id': 3456, invest_amount: 150}

1)

assign_to_portfolio (portfolio_name=None)
Assign all the notes in this order to a portfolio

Parameters portfolio_name — The name of the portfolio to assign it to (new or existing)
Returns boolean

True on success
Raises LendingClubError

execute (portfolio_name=None)
Place the order with LendingClub

Parameters portfolio_name : string

The name of the portfolio to add the invested loan notes to. This can be a new or existing
portfolio name.

Returns int
The completed order ID
Raises LendingClubError

remove (loan_id)
Remove a loan from your order

Parameters loan_id : int
The ID of the loan you want to remove

remove_all ()
Remove all loans from your order

update (loan_id, amount)
Update a loan in your order with this new amount

Parameters loan_id : int or dict
The ID of the loan you want to update or a dictionary containing a loan_id value
amount : int % 25

The dollar amount you want to invest in this loan, as a multiple of 25.

Session

Manage the LendingClub user session and all raw HTTP calls to the LendingClub site. This will almost always be
accessed through the API calls in Iendingclub. LendingClub instead of directly.

class lendingclub.session.Session (email=None, password=None, logger=None)

3.4. Session 21



Lending Club API Documentation, Release 0.1.10

Attributes

email
last_response

Methods

authenticate (email=None, password=None)
Authenticate with LendingClub and preserve the user session for future requests. This will raise an excep-
tion if the login appears to have failed, otherwise it returns True.

Since Lending Club doesn’t seem to have a login API, the code has to try to decide if the login worked or
not by looking at the URL redirect and parsing the returned HTML for errors.

Parameters email : string
The email of a user on Lending Club
password : string
The user’s password, for authentication.
Returns boolean
True on success or throws an exception on failure.
Raises session.AuthenticationError
If authentication failed
session.NetworkError
If a network error occurred

base_url = ‘https://www.lendingclub.com/’
The root URL that all paths are appended to

build_url (path)
Build a LendingClub URL from a URL path (without the domain).

Parameters path : string
The path part of the URL after the domain. i.e. https://www.lendingclub.com/<path>

clear session_order ()
Clears any existing order in the LendingClub.com user session.

get (path, query=None, redirects=True)
GET request wrapper for request ()

head (path, query=None, data=None, redirects=True)
HEAD request wrapper for request ()

is_site_available ()
Returns true if we can access LendingClub.com This is also a simple test to see if there’s a network
connection

Returns boolean
True or False

json_success (json)
Check the JSON response object for the success flag

22 Chapter 3. API


https://www.lendingclub.com

Lending Club API Documentation, Release 0.1.10

Parameters json : dict
A dictionary representing a JSON object from lendingclub.com

last_request_time =0
The timestamp of the last HTTP request

post (path, query=None, data=None, redirects=True)
POST request wrapper for request ()

request (method, path, query=None, data=None, redirects=True)
Sends HTTP request to LendingClub.

Parameters method : {GET, POST, HEAD, DELETE}
The HTTP method to use: GET, POST, HEAD or DELETE
path : string
The path that will be appended to the domain defined in hase_url.
query : dict
A dictionary of query string parameters
data : dict
A dictionary of POST data values
redirects : boolean
True to follow redirects, False to return the original response from the server.
Returns requests.Response
A requests.Response object

session_timeout =10
Minutes until the session expires. The session will attempt to reauth before the next HTTP call after
timeout.

set_logger (logger)
Have the Session class send debug logging to your python logging logger. Set to None stop the logging.

Parameters logger : Logger

The logger to send debug output to.

Exceptions
exception lendingclub.session.SessionError (value, origin=None)
Bases: exceptions.Exception
Base exception class for lendingclub.session
Parameters value : string
The error message
origin : Exception
The original exception, if this exception was caused by another.

exception lendingclub.session.AuthenticationError (value, origin=None)
Bases: lendingclub.session.SessionError

Authentication failed

3.4. Session 23


http://docs.python-requests.org/en/latest/api/#requests.Response
http://docs.python.org/2/library/logging.html

Lending Club API Documentation, Release 0.1.10

exception lendingclub.session.NetworkError (value, origin=None)
Bases: lendingclub.session.SessionError

An error occurred while making an HTTP request

24 Chapter 3. API



CHAPTER 4

Examples

Here are a few examples, in the python interactive shell, of using the Lending Club API module.

Simple Search and Order

Searching for grade B loans and investing $25 in the first one you find:

>>> from lendingclub import LendingClub

>>> from lendingclub.filters import Filter

>>> 1lc = LendingClub ()

>>> lc.authenticate()

Email:test@test.com

Password:

True

>>> filters = Filter()

>>> filters['grades']['B'] = True # Filter for only B grade loans

>>> results = lc.search(filters) Search using this filter

>>> len(results['loans']) # See how many results returned

100

>>> results['loans'][0]['loan_1id"] # See the loan_id of the first loan
1763030

>>> order = lc.start_order () # Start a new investment order

>>> order.add (1763030, 25) # Add the first loan to the order with a $25_
—investment

>>> order.execute () # Execute the order

1861879

>>> order.order_id # See the order ID

1861879

>>> order.assign_to_portfolio('Foo') # Assign the loans in this order to a_,
—portfolio called 'Foo'

True

e

25




Lending Club API Documentation, Release 0.1.10

Invest in a Portfolio of Loans

Here we want to invest $400 in a portfolio with only B, C, D and E grade notes with an average overall return between

17% - 19%. This similar to finding a portfolio in the ‘Invest’ section on lendingclub.com:

>>> from lendingclub import LendingClub

>>> from lendingclub.filters import Filter

>>> lc = LendingClub(email='testl@test.com', password='secretl23")
>>> lc.authenticate()

True

>>> filters = Filter() # Set the filters

>>> filters['grades']['B'] = True # See Pro Tips for a shorter way to do this

>>> filters['grades']['C'] = True

>>> filters['grades']['D'] = True

>>> filters['grades']['E'] = True

>>> lc.get_cash_balance () # See the cash you have available for investing

463.80000000000001

# Find a portfolio to invest in ($400, between

—17-19%, $25 per note)

>>> portfolio = lc.build_portfolio (400,
min_percent=17.0,
max_percent=19.0,
max_per_note=25,
filters=filters)

>>> len(portfolio['loan_fractions']) # See how many loans are in this portfolio
16

>>> loans_notes = portfolio['loan_ fractions']

>>> order = lc.start_order () # Start a new order

>>> order.add_batch (loans_notes) # Add the loan notes to the order

>>> order.execute () # Execute the order

1861880

Your Loan Notes

Get a list of the loan notes that you have already invested in (by default this will only return 100 at a time):

>>> from lendingclub import LendingClub
>>> lc = LendingClub(email='testl@test.com', password='secretl23")
>>> lc.authenticate()

True

>>> notes = lc.my_notes() # Get the first 100 loan notes

>>> len (notes['loans'])

100

>>> notes|['total'] # See the total number of loan notes you,,
—have

630

>>> notes = lc.my_notes (start_index=100) # Get the next 100 loan notes

>>> len (notes['loans'])

100

>>> notes = lc.my_notes (get_all=True) # Get all notes in one request (may be,
—slow)

>>> len(notes['loans'])

630

26 Chapter 4. Examples



Lending Club API Documentation, Release 0.1.10

Using Saved Filters

Use a filter saved on lendingclub.com to search for loans SEE NOTE BELOW:

>>> from lendingclub import LendingClub
>>> from lendingclub.filters import SavedFilter
>>> 1lc = LendingClub ()
>>> lc.authenticate ()
Email:test@test.com
Password:
True
>>> filters = SavedFilter.all_filters(lc) # Get a list of all saved filters on,
—LendinClub.com
>>> print filters # I've pretty printed the output for you
[
<SavedFilter: 12345, '90 Percent'>,
<SavedFilter: 23456, 'Only A loans'>
1

>>> filter = SavedFilter(lc, 7611034) # Load a saved filter by ID 7611034

>>> filter.name

u'Only A'

>>> results = lc.search(filter) # Search for loan notes with that filter
>>> len(results(['loans'])

100

NOTE: When using saved search filters you should always confirm that the returned results match your filters. This
is because LendingClub’s search API is not very forgiving. When we get the saved filter from the server and then
send it to the search API, if any part of it has been altered or becomes corrupt, LendingClub will do a wildcard search
instead of using the filter. The code in this python module takes great care to keep the filter pristine and check for
inconsistencies, but that’s no substitute for the individual investor’s diligence.

Batch Investing

Invest in a list of loans in one action:

>>> from lendingclub import LendingClub
>>> 1lc = LendingClub (email="testl@test.com', password='secretl23")
>>> lc.authenticate()

True

>>> loans = [1234, 2345, 3456] # Create a list of loan IDs
>>> order = lc.start_order () # Start a new order

>>> order.add_batch (loans, 25) # Invest $25 in each loan
>>> order.execute () # Execute the order

1861880

4.4. Using Saved Filters 27




Lending Club APl Documentation, Release 0.1.10

28

Chapter 4. Examples



CHAPTER B

License

The MIT License (MIT)
Copyright (c) 2013 Jeremy Gillick

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

29



Lending Club APl Documentation, Release 0.1.10

30

Chapter 5. License



Python Module Index

lendingclub, 7
lendingclub.filters, 14
lendingclub.session, 21

31



Lending Club APl Documentation, Release 0.1.10

32

Python Module Index



Index

A

add() (lendingclub.Order method), 20

add_batch() (Iendingclub.Order method), 20

all_filters() (lendingclub.filters.SavedFilter
method), 18

assign_to_portfolio() (Iendingclub.LendingClub method),

8
assign_to_portfolio() (lendingclub.Order method), 21
authenticate() (lendingclub.LendingClub method), 8

authenticate() (lendingclub.session.Session method), 22

AuthenticationError, 23

B

base_url (Iendingclub.session.Session attribute), 22

build_portfolio() (lendingclub.LendingClub method), 8

build_url() (lendingclub.session.Session method), 22

C

clear_session_order()
method), 22

E

execute() (Iendingclub.Order method), 21

F

Filter (class in lendingclub.filters), 14
FilterByLoanID (class in lendingclub.filters), 16
FilterValidationError, 18

G

get() (Iendingclub.session.Session method), 22

get_cash_balance() (lendingclub.LendingClub method),

10
get_investable_balance()

method), 11
get_note() (lendingclub.LendingClub method), 11

get_portfolio_list() (lendingclub.LendingClub method),

11

get_saved_filter() (lendingclub.LendingClub method), 11

static

(lendingclub.session.Session

(Iendingclub.LendingClub

get_saved_filters() (lendingclub.LendingClub method),

11

head() (lendingclub.session.Session method), 22

is_site_available() (lendingclub.LendingClub method),

12

is_site_available() (lendingclub.session.Session method),

22

J

json_success() (lendingclub.session.Session method), 22

L

last_request_time (lendingclub.session.Session attribute),

23
LendingClub (class in lendingclub), 7
lendingclub (module), 7
lendingclub.filters (module), 14
lendingclub.session (module), 21
LendingClubError, 13
load() (lendingclub.filters.SavedFilter method), 18

M

my_notes() (lendingclub.LendingClub method), 12

N

NetworkError, 23

O

Order (class in lendingclub), 19

P

post() (lendingclub.session.Session method), 23

R

reload() (lendingclub.filters.SavedFilter method), 18

33



Lending Club API Documentation, Release 0.1.10

remove() (lendingclub.Order method), 21
remove_all() (lendingclub.Order method), 21
request() (Iendingclub.session.Session method), 23

S

SavedFilter (class in lendingclub.filters), 17

SavedFilterError, 18

search() (lendingclub.LendingClub method), 12

search_my_notes() (lendingclub.LendingClub method),
12

search_string() (lendingclub.filters.Filter method), 15

search_string() (lendingclub.filters.SavedFilter method),
18

Session (class in lendingclub.session), 21

session_timeout (lendingclub.session.Session attribute),
23

SessionError, 23

set_logger() (lendingclub.LendingClub method), 13

set_logger() (lendingclub.session.Session method), 23

start_order() (Ilendingclub.LendingClub method), 13

U

update() (Iendingclub.Order method), 21

V

validate() (lendingclub.filters.Filter method), 15
validate_one() (lendingclub.filters.Filter method), 15
version() (Iendingclub.LendingClub method), 13

34

Index



	Disclaimer
	Download
	API
	Examples
	License
	Python Module Index

